540 lines
16 KiB
JavaScript
540 lines
16 KiB
JavaScript
|
import { NearestFilter, RenderTarget, Vector2, RendererUtils, QuadMesh, TempNode, NodeMaterial, NodeUpdateType } from 'three/webgpu';
|
||
|
import { reference, viewZToPerspectiveDepth, logarithmicDepthToViewZ, getScreenPosition, getViewPosition, sqrt, mul, div, cross, float, Continue, Break, Loop, int, max, abs, sub, If, dot, reflect, normalize, screenCoordinate, nodeObject, Fn, passTexture, uv, uniform, perspectiveDepthToViewZ, orthographicDepthToViewZ, vec2, vec3, vec4 } from 'three/tsl';
|
||
|
|
||
|
const _quadMesh = /*@__PURE__*/ new QuadMesh();
|
||
|
const _size = /*@__PURE__*/ new Vector2();
|
||
|
let _rendererState;
|
||
|
|
||
|
/**
|
||
|
* Post processing node for computing screen space reflections (SSR).
|
||
|
*
|
||
|
* Reference: {@link https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html}
|
||
|
*
|
||
|
* @augments TempNode
|
||
|
* @three_import import { ssr } from 'three/addons/tsl/display/SSRNode.js';
|
||
|
*/
|
||
|
class SSRNode extends TempNode {
|
||
|
|
||
|
static get type() {
|
||
|
|
||
|
return 'SSRNode';
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a new SSR node.
|
||
|
*
|
||
|
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
|
||
|
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
|
||
|
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
|
||
|
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
|
||
|
* @param {Camera} camera - The camera the scene is rendered with.
|
||
|
*/
|
||
|
constructor( colorNode, depthNode, normalNode, metalnessNode, camera ) {
|
||
|
|
||
|
super( 'vec4' );
|
||
|
|
||
|
/**
|
||
|
* The node that represents the beauty pass.
|
||
|
*
|
||
|
* @type {Node<vec4>}
|
||
|
*/
|
||
|
this.colorNode = colorNode;
|
||
|
|
||
|
/**
|
||
|
* A node that represents the beauty pass's depth.
|
||
|
*
|
||
|
* @type {Node<float>}
|
||
|
*/
|
||
|
this.depthNode = depthNode;
|
||
|
|
||
|
/**
|
||
|
* A node that represents the beauty pass's normals.
|
||
|
*
|
||
|
* @type {Node<vec3>}
|
||
|
*/
|
||
|
this.normalNode = normalNode;
|
||
|
|
||
|
/**
|
||
|
* A node that represents the beauty pass's metalness.
|
||
|
*
|
||
|
* @type {Node<float>}
|
||
|
*/
|
||
|
this.metalnessNode = metalnessNode;
|
||
|
|
||
|
/**
|
||
|
* The camera the scene is rendered with.
|
||
|
*
|
||
|
* @type {Camera}
|
||
|
*/
|
||
|
this.camera = camera;
|
||
|
|
||
|
/**
|
||
|
* The resolution scale. By default SSR reflections
|
||
|
* are computed in half resolutions. Setting the value
|
||
|
* to `1` improves quality but also results in more
|
||
|
* computational overhead.
|
||
|
*
|
||
|
* @type {number}
|
||
|
* @default 0.5
|
||
|
*/
|
||
|
this.resolutionScale = 0.5;
|
||
|
|
||
|
/**
|
||
|
* The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
|
||
|
* its effect once per frame in `updateBefore()`.
|
||
|
*
|
||
|
* @type {string}
|
||
|
* @default 'frame'
|
||
|
*/
|
||
|
this.updateBeforeType = NodeUpdateType.FRAME;
|
||
|
|
||
|
/**
|
||
|
* The render target the SSR is rendered into.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {RenderTarget}
|
||
|
*/
|
||
|
this._ssrRenderTarget = new RenderTarget( 1, 1, { depthBuffer: false, minFilter: NearestFilter, magFilter: NearestFilter } );
|
||
|
this._ssrRenderTarget.texture.name = 'SSRNode.SSR';
|
||
|
|
||
|
/**
|
||
|
* Controls how far a fragment can reflect.
|
||
|
*
|
||
|
*
|
||
|
* @type {UniformNode<float>}
|
||
|
*/
|
||
|
this.maxDistance = uniform( 1 );
|
||
|
|
||
|
/**
|
||
|
* Controls the cutoff between what counts as a possible reflection hit and what does not.
|
||
|
*
|
||
|
* @type {UniformNode<float>}
|
||
|
*/
|
||
|
this.thickness = uniform( 0.1 );
|
||
|
|
||
|
/**
|
||
|
* Controls the transparency of the reflected colors.
|
||
|
*
|
||
|
* @type {UniformNode<float>}
|
||
|
*/
|
||
|
this.opacity = uniform( 1 );
|
||
|
|
||
|
/**
|
||
|
* Represents the projection matrix of the scene's camera.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {UniformNode<mat4>}
|
||
|
*/
|
||
|
this._cameraProjectionMatrix = uniform( camera.projectionMatrix );
|
||
|
|
||
|
/**
|
||
|
* Represents the inverse projection matrix of the scene's camera.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {UniformNode<mat4>}
|
||
|
*/
|
||
|
this._cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
|
||
|
|
||
|
/**
|
||
|
* Represents the near value of the scene's camera.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {ReferenceNode<float>}
|
||
|
*/
|
||
|
this._cameraNear = reference( 'near', 'float', camera );
|
||
|
|
||
|
/**
|
||
|
* Represents the far value of the scene's camera.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {ReferenceNode<float>}
|
||
|
*/
|
||
|
this._cameraFar = reference( 'far', 'float', camera );
|
||
|
|
||
|
/**
|
||
|
* Whether the scene's camera is perspective or orthographic.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {UniformNode<bool>}
|
||
|
*/
|
||
|
this._isPerspectiveCamera = uniform( camera.isPerspectiveCamera ? 1 : 0 );
|
||
|
|
||
|
/**
|
||
|
* The resolution of the pass.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {UniformNode<vec2>}
|
||
|
*/
|
||
|
this._resolution = uniform( new Vector2() );
|
||
|
|
||
|
/**
|
||
|
* This value is derived from the resolution and restricts
|
||
|
* the maximum raymarching steps in the fragment shader.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {UniformNode<float>}
|
||
|
*/
|
||
|
this._maxStep = uniform( 0 );
|
||
|
|
||
|
/**
|
||
|
* The material that is used to render the effect.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {NodeMaterial}
|
||
|
*/
|
||
|
this._material = new NodeMaterial();
|
||
|
this._material.name = 'SSRNode.SSR';
|
||
|
|
||
|
/**
|
||
|
* The result of the effect is represented as a separate texture node.
|
||
|
*
|
||
|
* @private
|
||
|
* @type {PassTextureNode}
|
||
|
*/
|
||
|
this._textureNode = passTexture( this, this._ssrRenderTarget.texture );
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of the effect as a texture node.
|
||
|
*
|
||
|
* @return {PassTextureNode} A texture node that represents the result of the effect.
|
||
|
*/
|
||
|
getTextureNode() {
|
||
|
|
||
|
return this._textureNode;
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the size of the effect.
|
||
|
*
|
||
|
* @param {number} width - The width of the effect.
|
||
|
* @param {number} height - The height of the effect.
|
||
|
*/
|
||
|
setSize( width, height ) {
|
||
|
|
||
|
width = Math.round( this.resolutionScale * width );
|
||
|
height = Math.round( this.resolutionScale * height );
|
||
|
|
||
|
this._resolution.value.set( width, height );
|
||
|
this._maxStep.value = Math.round( Math.sqrt( width * width + height * height ) );
|
||
|
|
||
|
this._ssrRenderTarget.setSize( width, height );
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is used to render the effect once per frame.
|
||
|
*
|
||
|
* @param {NodeFrame} frame - The current node frame.
|
||
|
*/
|
||
|
updateBefore( frame ) {
|
||
|
|
||
|
const { renderer } = frame;
|
||
|
|
||
|
_rendererState = RendererUtils.resetRendererState( renderer, _rendererState );
|
||
|
|
||
|
const size = renderer.getDrawingBufferSize( _size );
|
||
|
|
||
|
_quadMesh.material = this._material;
|
||
|
|
||
|
this.setSize( size.width, size.height );
|
||
|
|
||
|
// clear
|
||
|
|
||
|
renderer.setMRT( null );
|
||
|
renderer.setClearColor( 0x000000, 0 );
|
||
|
|
||
|
// ssr
|
||
|
|
||
|
renderer.setRenderTarget( this._ssrRenderTarget );
|
||
|
_quadMesh.render( renderer );
|
||
|
|
||
|
// restore
|
||
|
|
||
|
RendererUtils.restoreRendererState( renderer, _rendererState );
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is used to setup the effect's TSL code.
|
||
|
*
|
||
|
* @param {NodeBuilder} builder - The current node builder.
|
||
|
* @return {PassTextureNode}
|
||
|
*/
|
||
|
setup( builder ) {
|
||
|
|
||
|
const uvNode = uv();
|
||
|
|
||
|
const pointToLineDistance = Fn( ( [ point, linePointA, linePointB ] )=> {
|
||
|
|
||
|
// https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
|
||
|
|
||
|
return cross( point.sub( linePointA ), point.sub( linePointB ) ).length().div( linePointB.sub( linePointA ).length() );
|
||
|
|
||
|
} );
|
||
|
|
||
|
const pointPlaneDistance = Fn( ( [ point, planePoint, planeNormal ] )=> {
|
||
|
|
||
|
// https://mathworld.wolfram.com/Point-PlaneDistance.html
|
||
|
// https://en.wikipedia.org/wiki/Plane_(geometry)
|
||
|
// http://paulbourke.net/geometry/pointlineplane/
|
||
|
|
||
|
const d = mul( planeNormal.x, planePoint.x ).add( mul( planeNormal.y, planePoint.y ) ).add( mul( planeNormal.z, planePoint.z ) ).negate().toVar();
|
||
|
|
||
|
const denominator = sqrt( mul( planeNormal.x, planeNormal.x, ).add( mul( planeNormal.y, planeNormal.y ) ).add( mul( planeNormal.z, planeNormal.z ) ) ).toVar();
|
||
|
const distance = div( mul( planeNormal.x, point.x ).add( mul( planeNormal.y, point.y ) ).add( mul( planeNormal.z, point.z ) ).add( d ), denominator );
|
||
|
return distance;
|
||
|
|
||
|
} );
|
||
|
|
||
|
const getViewZ = Fn( ( [ depth ] ) => {
|
||
|
|
||
|
let viewZNode;
|
||
|
|
||
|
if ( this.camera.isPerspectiveCamera ) {
|
||
|
|
||
|
viewZNode = perspectiveDepthToViewZ( depth, this._cameraNear, this._cameraFar );
|
||
|
|
||
|
} else {
|
||
|
|
||
|
viewZNode = orthographicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
|
||
|
|
||
|
}
|
||
|
|
||
|
return viewZNode;
|
||
|
|
||
|
} );
|
||
|
|
||
|
const sampleDepth = ( uv ) => {
|
||
|
|
||
|
const depth = this.depthNode.sample( uv ).r;
|
||
|
|
||
|
if ( builder.renderer.logarithmicDepthBuffer === true ) {
|
||
|
|
||
|
const viewZ = logarithmicDepthToViewZ( depth, this._cameraNear, this._cameraFar );
|
||
|
|
||
|
return viewZToPerspectiveDepth( viewZ, this._cameraNear, this._cameraFar );
|
||
|
|
||
|
}
|
||
|
|
||
|
return depth;
|
||
|
|
||
|
};
|
||
|
|
||
|
const ssr = Fn( () => {
|
||
|
|
||
|
const metalness = this.metalnessNode.sample( uvNode ).r;
|
||
|
|
||
|
// fragments with no metalness do not reflect their environment
|
||
|
metalness.equal( 0.0 ).discard();
|
||
|
|
||
|
// compute some standard FX entities
|
||
|
const depth = sampleDepth( uvNode ).toVar();
|
||
|
const viewPosition = getViewPosition( uvNode, depth, this._cameraProjectionMatrixInverse ).toVar();
|
||
|
const viewNormal = this.normalNode.rgb.normalize().toVar();
|
||
|
|
||
|
// compute the direction from the position in view space to the camera
|
||
|
const viewIncidentDir = ( ( this.camera.isPerspectiveCamera ) ? normalize( viewPosition ) : vec3( 0, 0, - 1 ) ).toVar();
|
||
|
|
||
|
// compute the direction in which the light is reflected on the surface
|
||
|
const viewReflectDir = reflect( viewIncidentDir, viewNormal ).toVar();
|
||
|
|
||
|
// adapt maximum distance to the local geometry (see https://www.mathsisfun.com/algebra/vectors-dot-product.html)
|
||
|
const maxReflectRayLen = this.maxDistance.div( dot( viewIncidentDir.negate(), viewNormal ) ).toVar();
|
||
|
|
||
|
// compute the maximum point of the reflection ray in view space
|
||
|
const d1viewPosition = viewPosition.add( viewReflectDir.mul( maxReflectRayLen ) ).toVar();
|
||
|
|
||
|
// check if d1viewPosition lies behind the camera near plane
|
||
|
If( this._isPerspectiveCamera.equal( float( 1 ) ).and( d1viewPosition.z.greaterThan( this._cameraNear.negate() ) ), () => {
|
||
|
|
||
|
// if so, ensure d1viewPosition is clamped on the near plane.
|
||
|
// this prevents artifacts during the ray marching process
|
||
|
const t = sub( this._cameraNear.negate(), viewPosition.z ).div( viewReflectDir.z );
|
||
|
d1viewPosition.assign( viewPosition.add( viewReflectDir.mul( t ) ) );
|
||
|
|
||
|
} );
|
||
|
|
||
|
// d0 and d1 are the start and maximum points of the reflection ray in screen space
|
||
|
const d0 = screenCoordinate.xy.toVar();
|
||
|
const d1 = getScreenPosition( d1viewPosition, this._cameraProjectionMatrix ).mul( this._resolution ).toVar();
|
||
|
|
||
|
// below variables are used to control the raymarching process
|
||
|
|
||
|
// total length of the ray
|
||
|
const totalLen = d1.sub( d0 ).length().toVar();
|
||
|
|
||
|
// offset in x and y direction
|
||
|
const xLen = d1.x.sub( d0.x ).toVar();
|
||
|
const yLen = d1.y.sub( d0.y ).toVar();
|
||
|
|
||
|
// determine the larger delta
|
||
|
// The larger difference will help to determine how much to travel in the X and Y direction each iteration and
|
||
|
// how many iterations are needed to travel the entire ray
|
||
|
const totalStep = max( abs( xLen ), abs( yLen ) ).toVar();
|
||
|
|
||
|
// step sizes in the x and y directions
|
||
|
const xSpan = xLen.div( totalStep ).toVar();
|
||
|
const ySpan = yLen.div( totalStep ).toVar();
|
||
|
|
||
|
const output = vec4( 0 ).toVar();
|
||
|
|
||
|
// the actual ray marching loop
|
||
|
// starting from d0, the code gradually travels along the ray and looks for an intersection with the geometry.
|
||
|
// it does not exceed d1 (the maximum ray extend)
|
||
|
Loop( { start: int( 0 ), end: int( this._maxStep ), type: 'int', condition: '<' }, ( { i } ) => {
|
||
|
|
||
|
// TODO: Remove this when Chrome is fixed, see https://issues.chromium.org/issues/372714384#comment14
|
||
|
If( metalness.equal( 0 ), () => {
|
||
|
|
||
|
Break();
|
||
|
|
||
|
} );
|
||
|
|
||
|
// stop if the maximum number of steps is reached for this specific ray
|
||
|
If( float( i ).greaterThanEqual( totalStep ), () => {
|
||
|
|
||
|
Break();
|
||
|
|
||
|
} );
|
||
|
|
||
|
// advance on the ray by computing a new position in screen space
|
||
|
const xy = vec2( d0.x.add( xSpan.mul( float( i ) ) ), d0.y.add( ySpan.mul( float( i ) ) ) ).toVar();
|
||
|
|
||
|
// stop processing if the new position lies outside of the screen
|
||
|
If( xy.x.lessThan( 0 ).or( xy.x.greaterThan( this._resolution.x ) ).or( xy.y.lessThan( 0 ) ).or( xy.y.greaterThan( this._resolution.y ) ), () => {
|
||
|
|
||
|
Break();
|
||
|
|
||
|
} );
|
||
|
|
||
|
// compute new uv, depth, viewZ and viewPosition for the new location on the ray
|
||
|
const uvNode = xy.div( this._resolution );
|
||
|
const d = sampleDepth( uvNode ).toVar();
|
||
|
const vZ = getViewZ( d ).toVar();
|
||
|
const vP = getViewPosition( uvNode, d, this._cameraProjectionMatrixInverse ).toVar();
|
||
|
|
||
|
const viewReflectRayZ = float( 0 ).toVar();
|
||
|
|
||
|
// normalized distance between the current position xy and the starting point d0
|
||
|
const s = xy.sub( d0 ).length().div( totalLen );
|
||
|
|
||
|
// depending on the camera type, we now compute the z-coordinate of the reflected ray at the current step in view space
|
||
|
If( this._isPerspectiveCamera.equal( float( 1 ) ), () => {
|
||
|
|
||
|
const recipVPZ = float( 1 ).div( viewPosition.z ).toVar();
|
||
|
viewReflectRayZ.assign( float( 1 ).div( recipVPZ.add( s.mul( float( 1 ).div( d1viewPosition.z ).sub( recipVPZ ) ) ) ) );
|
||
|
|
||
|
} ).Else( () => {
|
||
|
|
||
|
viewReflectRayZ.assign( viewPosition.z.add( s.mul( d1viewPosition.z.sub( viewPosition.z ) ) ) );
|
||
|
|
||
|
} );
|
||
|
|
||
|
// if viewReflectRayZ is less or equal than the real z-coordinate at this place, it potentially intersects the geometry
|
||
|
If( viewReflectRayZ.lessThanEqual( vZ ), () => {
|
||
|
|
||
|
// compute the distance of the new location to the ray in view space
|
||
|
// to clarify vP is the fragment's view position which is not an exact point on the ray
|
||
|
const away = pointToLineDistance( vP, viewPosition, d1viewPosition ).toVar();
|
||
|
|
||
|
// compute the minimum thickness between the current fragment and its neighbor in the x-direction.
|
||
|
const xyNeighbor = vec2( xy.x.add( 1 ), xy.y ).toVar(); // move one pixel
|
||
|
const uvNeighbor = xyNeighbor.div( this._resolution );
|
||
|
const vPNeighbor = getViewPosition( uvNeighbor, d, this._cameraProjectionMatrixInverse ).toVar();
|
||
|
const minThickness = vPNeighbor.x.sub( vP.x ).toVar();
|
||
|
minThickness.mulAssign( 3 ); // expand a bit to avoid errors
|
||
|
|
||
|
const tk = max( minThickness, this.thickness ).toVar();
|
||
|
|
||
|
If( away.lessThanEqual( tk ), () => { // hit
|
||
|
|
||
|
const vN = this.normalNode.sample( uvNode ).rgb.normalize().toVar();
|
||
|
|
||
|
If( dot( viewReflectDir, vN ).greaterThanEqual( 0 ), () => {
|
||
|
|
||
|
// the reflected ray is pointing towards the same side as the fragment's normal (current ray position),
|
||
|
// which means it wouldn't reflect off the surface. The loop continues to the next step for the next ray sample.
|
||
|
Continue();
|
||
|
|
||
|
} );
|
||
|
|
||
|
// this distance represents the depth of the intersection point between the reflected ray and the scene.
|
||
|
const distance = pointPlaneDistance( vP, viewPosition, viewNormal ).toVar();
|
||
|
|
||
|
If( distance.greaterThan( this.maxDistance ), () => {
|
||
|
|
||
|
// Distance exceeding limit: The reflection is potentially too far away and
|
||
|
// might not contribute significantly to the final color
|
||
|
Break();
|
||
|
|
||
|
} );
|
||
|
|
||
|
const op = this.opacity.mul( metalness ).toVar();
|
||
|
|
||
|
// distance attenuation (the reflection should fade out the farther it is away from the surface)
|
||
|
const ratio = float( 1 ).sub( distance.div( this.maxDistance ) ).toVar();
|
||
|
const attenuation = ratio.mul( ratio );
|
||
|
op.mulAssign( attenuation );
|
||
|
|
||
|
// fresnel (reflect more light on surfaces that are viewed at grazing angles)
|
||
|
const fresnelCoe = div( dot( viewIncidentDir, viewReflectDir ).add( 1 ), 2 );
|
||
|
op.mulAssign( fresnelCoe );
|
||
|
|
||
|
// output
|
||
|
const reflectColor = this.colorNode.sample( uvNode );
|
||
|
output.assign( vec4( reflectColor.rgb, op ) );
|
||
|
Break();
|
||
|
|
||
|
} );
|
||
|
|
||
|
} );
|
||
|
|
||
|
} );
|
||
|
|
||
|
return output;
|
||
|
|
||
|
} );
|
||
|
|
||
|
this._material.fragmentNode = ssr().context( builder.getSharedContext() );
|
||
|
this._material.needsUpdate = true;
|
||
|
|
||
|
//
|
||
|
|
||
|
return this._textureNode;
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Frees internal resources. This method should be called
|
||
|
* when the effect is no longer required.
|
||
|
*/
|
||
|
dispose() {
|
||
|
|
||
|
this._ssrRenderTarget.dispose();
|
||
|
|
||
|
this._material.dispose();
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
export default SSRNode;
|
||
|
|
||
|
/**
|
||
|
* TSL function for creating screen space reflections (SSR).
|
||
|
*
|
||
|
* @tsl
|
||
|
* @function
|
||
|
* @param {Node<vec4>} colorNode - The node that represents the beauty pass.
|
||
|
* @param {Node<float>} depthNode - A node that represents the beauty pass's depth.
|
||
|
* @param {Node<vec3>} normalNode - A node that represents the beauty pass's normals.
|
||
|
* @param {Node<float>} metalnessNode - A node that represents the beauty pass's metalness.
|
||
|
* @param {Camera} camera - The camera the scene is rendered with.
|
||
|
* @returns {SSRNode}
|
||
|
*/
|
||
|
export const ssr = ( colorNode, depthNode, normalNode, metalnessNode, camera ) => nodeObject( new SSRNode( nodeObject( colorNode ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( metalnessNode ), camera ) );
|